1,620 research outputs found

    Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements

    Get PDF
    As part of the Radiance in a Dynamic Ocean (RaDyO) program, we have developed a numerical model for efficiently simulating the polarized light field under highly dynamic ocean surfaces. Combining the advantages of the three-dimensional Monte Carlo and matrix operator methods, this hybrid model has proven to be computationally effective for simulations involving a dynamic air-sea interface. Given water optical properties and ocean surface wave slopes obtained from RaDyO field measurements, model-simulated radiance and polarization fields under a dynamic surface are found to be qualitatively comparable to their counterparts from field measurements and should be quantitatively comparable if the light field measurement and the wave slope/water optical property measurements are appropriately collocated and synchronized. This model serves as a bridge to connect field measurements of water optical properties, wave slopes and polarized light fields. It can also be used as a powerful yet convenient tool to predict the temporal underwater polarized radiance in a real-world situation. When appropriate surface measurements are available, model simulation is shown to reveal more dynamic features in the underwater light field than direct measurements

    Toward closure of upwelling radiance in coastal waters

    Get PDF
    We present three methods for deriving water-leaving radiance Lw(λ) and remote-sensing reflectance using a hyperspectral tethered spectral radiometer buoy (HyperTSRB), profiled spectroradiometers, and Hydrolight simulations. Average agreement for 53 comparisons between HyperTSRB and spectroradiometric determinations of Lw(λ) was 26%, 13%, and 17% at blue, green, and red wavelengths, respectively. Comparisons of HyperTSRB (and spectroradiometric) Lw(λ) with Hydrolight simulations yielded percent differences of 17% (18%), 17% (18%), and 13% (20%) for blue, green, and red wavelengths, respectively. The differences can be accounted for by uncertainties in model assumptions and model input data (chlorophyll fluorescence quantum efficiency and the spectral chlorophyll-specific absorption coefficient for the red wavelengths, and scattering corrections for input ac-9 absorption data and volume scattering function measurements for blue wavelengths) as well as radiance measurement inaccuracies [largely differences in the depth of the Lu(λ, z) sensor on the HyperTSRB]. © 2003 Optical Society of America

    Hysteresis loops of Co-Pt perpendicular magnetic multilayers

    Full text link
    We develop a phenomenological model to study magnetic hysteresis in two samples designed as possible perpendicular recording media. A stochastic cellular automata model captures cooperative behavior in the nucleation of magnetic domains. We show how this simple model turns broad hysteresis loops into loops with sharp drops like those observed in these samples, and explains their unusual features. We also present, and experimentally verify, predictions of this model, and suggest how insights from this model may apply more generally.Comment: 4.5 pages, 5 figure

    Brewster-angle measurements of sea-surface reflectance using a high resolution spectroradiometer

    Get PDF
    This paper describes the design, construction and testing of a ship-borne spectroradiometer based on an imaging spectrograph and cooled CCD array with a wavelength range of 350-800 nm and 4 nm spectral sampling. The instrument had a minimum spectral acquisition time of 0.1 s, but in practice data were collected over periods of 10 s to allow averaging of wave effects. It was mounted on a ship's superstructure so that it viewed the sea surface from a height of several metres at the Brewster angle (53 degrees) through a linear polarizing filter. Comparison of sea-leaving spectra acquired with the polarizer oriented horizontally and vertically enabled estimation of the spectral composition of sky light reflected directly from the sea surface. A semi-empirical correction procedure was devised for retrieving water-leaving radiance spectra from these measurements while minimizing the influence of reflected sky light. Sea trials indicated that reflectance spectra obtained by this method were consistent with the results of radiance transfer modelling of case 2 waters with similar concentrations of chlorophyll and coloured dissolved organic matter. Surface reflectance signatures measured at three locations containing blooms of different phytoplankton species were easily discriminated and the instrument was sufficiently sensitive to detect solar-stimulated fluorescence from surface chlorophyll concentrations down to 1 mg m−3

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    FU Orionis resolved by infrared long baseline interferometry at a 2-AU scale

    Full text link
    We present the first infrared interferometric observations of a young stellar object with a spatial projected resolution better than 2 AU. The observations were obtained with the Palomar Testbed Interferometer. FU Ori exhibits a visibility of V^2 =0.72 +/- 0.07 for a 103 +/- 5 m projected baseline at lambda = 2.2 microns. The data are consistent on the spatial scale probed by PTI both with a binary system scenario (maximum magnitude difference of 2.7 +/- 0.5 mag and smallest separation of 0.35 +/- 0.05 AU) and a standard luminous accretion disk model (approx. accretion rate of 6e-5 Mo/yr) where the thermal emission dominates the stellar scattering, and inconsistent with a single stellar photosphere.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    Актуальність впровадження систем газового обліку в сучасних умовах

    Get PDF
    Free energy calculation has long been an important goal for molecular dynamics simulation and force field development, but historically it has been challenged by limited performance, accuracy, and creation of topologies for arbitrary small molecules. This has made it difficult to systematically compare different sets of parameters to improve existing force fields, but in the past few years several authors have developed increasingly automated procedures to generate parameters for force fields such as Amber, CHARMM, and OPLS. Here, we present a new framework that enables fully automated generation of GROMACS topologies for any of these force fields and an automated setup for parallel adaptive optimization of high-throughput free energy calculation by adjusting lambda point placement on the fly. As a small example of this automated pipeline, we have calculated solvation free energies of 50 different small molecules using the GAFF, OPLS-AA, and CGenFF force fields and four different water models, and by including the often neglected polarization costs, we show that the common charge models are somewhat underpolarized.QC 20150505</p

    A quasi-experimental study to mobilize rural low-income communities to assess and improve the ecological environment to prevent childhood obesity

    Get PDF
    Citation: Peters, P., Gold, A., Abbott, A., Contreras, D., Keim, A., Oscarson, R., . . . Mobley, A. R. (2016). A quasi-experimental study to mobilize rural low-income communities to assess and improve the ecological environment to prevent childhood obesity. Bmc Public Health, 16, 7. doi:10.1186/s12889-016-3047-4Background: The Ecological Model of Childhood Overweight focuses on characteristics that could affect a child's weight status in relation to the multiple environments surrounding that child. A community coaching approach allows community groups to identify their own strengths, priorities and identity. Little to no research currently exists related to community-based efforts inclusive of community coaching in creating environmental change to prevent childhood obesity particularly in rural communities. Methods: A quasi-experimental study will be conducted with low-income, rural communities (n = 14) in the North Central region of the United States to mobilize capacity in communities to create and sustain an environment of healthy eating and physical activity to prevent childhood obesity. Two rural communities within seven Midwestern states (IN, KS, MI, OH, ND, SD, WI) will be randomly assigned to serve as an intervention or comparison community. Coalitions will complete assessments of their communities, choose from evidence-based approaches, and implement nutrition and physical activity interventions each year to prevent childhood obesity with emphasis on policy, system or environmental changes over four years. Only intervention coalitions will receive community coaching from a trained coach. Outcomes will be assessed at baseline, annually and project end using previously validated instruments and include coalition self-assessments, parental perceptions regarding the built environment, community, neighborhood, and early childhood environments, self-reflections from coaches and project staff, ripple effect mapping with coalitions and, final interviews of key stakeholders and coaches. A mixed-methods analysis approach will be used to evaluate if Community Coaching enhances community capacity to create and sustain an environment to support healthy eating and physical activity for young children. ANOVA or corresponding non-parametric tests will be used to analyze quantitative data relating to environmental change with significance set at P < .05. Dominant emergent themes from the qualitative data will be weaved together with quantitative data to develop a theoretical model representing how communities were impacted by the project. Discussion: This project will yield data and best practices that could become a model for community development based approaches to preventing childhood obesity in rural communities

    Sex differentiation in grayling (Salmonidae) goes through an all-male stage and is delayed in genetic males who instead grow faster.

    Get PDF
    Fish populations can be threatened by distorted sex ratios that arise during sex differentiation. Here we describe sex differentiation in a wild grayling (Thymallus thymallus) population that suffers from distorted sex ratios. We verified that sex determination is linked to the sex determining locus (sdY) of salmonids. This allowed us to study sex-specific gene expression and gonadal development. Sex-specific gene expression could be observed during embryogenesis and was strong around hatching. About half of the fish showed immature testes around eleven weeks after fertilization. This phenotype was mostly replaced by the "testis-to-ovary" or "ovaries" phenotypes during development. The gonads of the remaining fish stayed undifferentiated until six months after fertilization. Genetic sexing revealed that fish with undifferentiated gonads were all males, who grew larger than the genetic females during the observational period. Only 12% of the genetic males showed testicular tissue six months after fertilization. We conclude that sex differentiation starts before hatching, goes through an all-male stage for both sexes (which represents a rare case of "undifferentiated" gonochoristic species that usually go through an all-female stage), and is delayed in males. During these juvenile stages males grow faster than females instead of developing their gonads
    corecore